

Disclaimer Views expressed in these written materials and in the related live presentation do not necessarily reflect the professional opinions or positions that the presenters would take in an actual business appraisal assignment, or in providing business appraisal services in connection with an actual litigation matter. Nothing contained in these written materials, or as orally expressed in the related presentation, shall be construed to constitute the rendering of appraisal advice; the rendering of an appraisal opinion; the rendering of an opinion as to the propriety of taking a particular appraisal position; or the rendering of any other professional opinion or service. Business appraisal services are necessarily fact-sensitive particularly in a litigation context. Therefore, the presenters urge conference participants to apply their expertise to particular appraisal fact patterns that they encounter, or to seek competent professional assistance as warranted in the circumstances. Further, this presentation should not be construed as legal advice on any specific facts or circumstances. The contents are intended for general information purposes only and may not be guoted or referred to in any other publication or proceeding without the prior written consent of the authors. © 2023 Keiter CPAs Experience | Knowledge | Relationships | Insight

History Lesson
 Pre-1970s: Before the Black-Scholes model, there was no universally accepted method for pricing options. Traders mostly relied on intuition and simplified models.
 Early Research: In the early 1970s, academics and practitioners began looking at ways to calculate the value of options in a more systematic and reliable manner.
 Fisher Black and Myron Scholes: Fisher Black and Myron Scholes, both finance scholars, began collaborating on developing a mathematical formula to price options.
 Robert Merton's Contribution: Around the same time, Robert C. Merton, another finance scholar, was independently working on similar problems. Merton later added crucial extensions to the original Black-Scholes work.

 Assumptions: The model they developed was based on several assumptions, <u>including constant volatility and interest rates</u>, and it didn't account for taxes or transaction costs.

- Publication: In 1973, Black and Scholes published their groundbreaking paper, "The Pricing of Options and Corporate Liabilities," in the Journal of Political Economy. The paper presented the Black-Scholes formula for pricing European call and put options.
- Immediate Impact: The model was immediately popular and started being used by options traders. It led to a more standardized and liquid options market.
- Nobel Prize: In 1997, Myron Scholes and Robert Merton were awarded the Nobel Prize in Economic Sciences for their contributions to the field of financial economics. Fisher Black, who had passed away by that time, was not eligible for the prize, but his contributions were acknowledged.
- Further Developments: Over the years, the model has been adapted and extended to account for other types of options, varying interest rates, and more complex financial instruments.
- Continuing Legacy: Despite its limitations and assumptions, the Black-Scholes model remains one of the most important and widely-used concepts in modern finance.

Experience | Knowledge | Relationships | Insight

© 2023 Keiter CPAs

	the Diack Scholes would
Limitation	Description
Constant Volatility	Assumes constant volatility of the underlying asset, while in reality, volatility varies over time.
Log-normal Distribution of Stock Prices	Assumes log-normally distributed stock prices, ignoring the possibility of skewness and kurtosis in real asset returns.
Constant Interest Rates	Assumes a constant risk-free interest rate, which can vary in real-world scenarios due to economic conditions and monetary policy.
No Dividends	The original model does not account for dividends, limiting its application to certain assets. Extensions have been made to include dividend yield.
European Options Only	Specifically designed for European options, which can only be exercised at expiration, not directly applicable to American options.
Liquidity and Transaction Costs	Does not consider transaction costs or the impact of liquidity on option pricing, which can be significant in real markets.
Counterparty Risk	Ignores the credit risk of the counterparty, a significant factor especially in over-the-counter (OTC) markets.
Market Sentiments and Behavioral Factors	Does not account for market sentiments, irrational behavior, or other market anomalies, which can influence option prices

Application Employee O	of Black-Schole option Pool	es Mode	l:
 Black-Scholes can b financial reporting and 	e used to determine the value tax purposes:	e of stock opti	ons issued for
	Assumptions Value of Common Stock (S) Strike Price (X) Expected dividend yield (d) Expected dividend yield (continuous) (dy) Time to expiration (t) Volatility (σ) Risk-free interest rate (continuous) (r) d1 Normal distribution of d1 (N(d1)) d2 Normal distribution of d2 (N(d2)) Fair value of stock option Total options granted in 2022 Fair value of stock option Total carvelue of 2022 stock ontions	Fair Value \$6.25 \$7.50 0.00% 5.00 35.00% 3.66% 3.59% 0.39 0.65 (0.39) 0.35 \$1.8971 225,000 \$1.8971 225,000	
Excel Formula: Value of	L Call Option = S*EXP(-dy*t)*(NORMSDIST	(d1))-X*EXP(-r*t)*(N	ORMSDIST(d2))
Where d1	=(LN(S/X)+(r-dy+(v^2/2))*t)/(v*SQRT(t)) a Experience Knowledge Relationships Insi	ind d2 =d1-(v*SQRT(ight	t)) © 2023 Keiter CPAs

Allocating Classes o	g Equity Va of Securitie	lue to Di s – Break	fferent cpoints	
 First step, determin 	e breakpoints of cha	nge in distribution	of allocable value	
		Participating		
Eve	nt	Class	Participating Units	Breakpoint
1 FMV per Common L	Jnit less than \$10.00	Common	3,125,273	\$0
2 FMV per Common L	Init greater than \$10.00	Common and NPIs	4,217,060	\$31,252,731
> Based upon break	unainta abava tha ac			
as follows:	cpoints above, the se	ecurities participate	e in the allocadie	e value
as follows:	cpoints above, the se	Breakpoint	e in the allocable	e value
as follows:	Allocation %	Breakpoint Event 1	t 2	e value
as follows:	Allocation %	Breakpoint Event 1 Even 100.00% 74	t 2 1.11%	e value
as follows:	Allocation % Common Units Net Profit Interests	Breakpoint Event 1 Even 100.00% 74 0% 25	t 2 1.11%	e value
as follows:	Allocation % Common Units Net Profit Interests Total	Breakpoint Event 1 Even 100.00% 74 0% 25 100.00% 100	t 2 1.11% 5.89%	∍ value

Alloc Class	ating Equity Value ses of Securities – (to Differ OPM	rent	
> Black-Scho	les is next used to determine the incre	emental value of	f each breakp	oint:
		Breakp	oint	
	Assumptions	1	2	
	Value of underlying Asset (S)	\$24,718,269	\$24,718,269	
	Strike Price (Breakpoint) (X)	\$0	\$31,252,731	
	Expected dividend yield (d)	0%	0%	
	Expected dividend yield (continuous) (dy)	0%	0%	
	Time to expiration (t)	5.00	5.00	
	Volatility (v)	60%	60%	
	Risk-free rate (rf)	1.62%	1.62%	
	Risk-free interest rate (continuous) (r)	1.61%	1.61%	
	d1	28.87	0.56	
	Normal distribution of d1 (N(d1))	1.00	0.71	
			()	
	d2	27.52	(0.79)	
	Normal distribution of d2 (N(d2))	1.00	0.22	
	Value of Common Unit on ontion	¢04 749 060	¢11 241 EGG	
	value of Continion only as option	\$24,710,209	\$11,341,300	
	Incremental Value	\$13,376,703	\$11,341,566	
Excel Fo	rmula: Value of Call Option = S*EXP(-dy*t)*(NORM	/ISDIST(d1))-X*EXP(-r*t)*(NORMSDIST	「(d2))
	Where d1 =(LN(S/X)+(r-dy+(v^2/2))*t)/(v*SQ	RT(t)) and d2 =d1-(v*	*SQRT(t))	
	Experience Knowledge Relation	nships Insight	© 2	023 Keiter CPAs

Allocati Classes	ng E s of S	quity Value to Securities – Pric	Different ce Volatil	ity
 Annualized pri- returns for guid 	ce volatili leline pub	ty was estimated for the sub lic companies as follows:	ject company bas	sed upon weekly
			Price Volatility	
	Ticker	Company	5 Vear	
	I NW	Light & Wonder Inc	75.42%	
	CHDN	Churchill Downs Incorporated	42 41%	
	EVRI	Everi Holdings Inc.	74.33%	
	BYD	Boyd Gaming Corporation	51.63%	
	PENN	PENN Entertainment. Inc.	71.03%	
	IGT	International Game Technology PLC	59.49%	
	Mini	mum	42.41%	
	25th	n percentile	53.60%	
	Mea	an	62.39%	
	Med	lian	65.26%	
	75th	n percentile	73.51%	
	Max	imum	75.42%	
	Sele	ected Price Volatility	60.00%	
		Experience Knowledge Relationships I	nsight	© 2023 Keiter CPAs

Alternative Option Models to Calculate DLOMs

> The range of discounts for lack of marketability indicated by these alternative option models for our subject company were as follows:

	Finnerty	Ghaidarov	Chaffe (Protective Put)	Longstaff
Option pricing inputs - 5 year holding period				
Volatility	60.0%	60.0%	60.0%	60.0%
Dividend vield	0.0%	0.0%	0.0%	N//
Holding period (years)	5.0	5.0	5.0	5.0
Risk-free rate	N/A	N/A	1.62%	N//
Indicated discount for lack of marketability	25.8%	32.3%	44.1%	61.59
Experience	Knowledge Relationsh	ips Insight	© 20	23 Keiter CPA

Experience | Knowledge | Relationships | Insight

Monte	Carlo	Simulations	v.	OPM

Aspect	Option Pricing Model	Monte Carlo Simulation
Definition	Mathematical model used to calculate the theoretical value of an option.	Statistical technique to model the probability of different outcomes in a process with random variables.
Examples	Black-Scholes Model, Binomial Model	N/A (Monte Carlo is a technique, not a specific model)
Approach	Deterministic: Calculates a single, definite price based on given inputs.	Stochastic: Uses random sampling to estimate outcomes and their probabilities.
Flexibility	Limited flexibility, operates under specific assumptions.	Highly flexible, can model a wide range of scenarios and complex derivatives.
Computational Intensity	Generally less computationally intensive.	Can be computationally intensive due to a large number of simulations.
Applicability	Suitable for simpler, well-defined option types.	Suitable for complex options and derivatives where traditional models may not apply.
Аррисарину	option types.	derivatives where traditional models may not apply.

CASE STUDY 5 SCENARIO ANALYSIS WITH

MANAGEMENT PROJECTIONS USING MONTE CARLO

Experience | Knowledge | Relationships | Insight

© 2023 Keiter CPAs

Scenario Analysis with Management Projections Using Monte Carlo

The assumptions below for revenue growth and operating expenses (as a % of revenue) and a normal probability distribution were used to run the Monte Carlo simulations. Different types of probability distributions may be appropriate (e.g., lognormal, triangular, uniform, etc.) depending on the variable (see next slide).

	Distributions						Rando	m Variables fro	m Distributions	;
	Revenue	e Growth	Opex (% of	Revenue)				Revenue		Opex (% of
Year	Mean	Std. Dev.	Mean	Std. Dev.		Year	Revenue	growth	Opex	Revenue)
1	18.4%	2.30%	54.50%	6.81%		Y0	17,066,520			
2	30.9%	3.86%	44.70%	5.59%		1	20,227,490	18.52%	10,676,679	52.78%
3	25.6%	3.20%	38.27%	4.78%		2	26,844,518	32.71%	12,535,873	46.70%
4	25.6%	3 21%	32 54%	4 07%		3	33,730,166	25.65%	11,107,607	32.93%
5	24.4%	3.05%	27.48%	3.44%		4	41,824,032	24.00%	11,600,082	27.74%
6	24.4 /0	3.03%	27.4070	3.44 /0		5	49,629,154	18.66%	13,045,840	26.29%
0	20.0%	2.30%	24.00%	3.01%		6	59,880,763	20.66%	17,654,529	29.48%
1	15.0%	1.88%	21.97%	2.75%		7	67,877,739	13.35%	20,343,279	29.97%
8	10.0%	1.25%	20.98%	2.62%		8	73,254,421	7.92%	16,904,112	23.08%
9	7.5%	0.94%	20.50%	2.56%		9	79,113,108	8.00%	19,471,811	24.61%
10	5.0%	0.63%	20.50%	2.56%		10	82,856,265	4.73%	19,233,396	23.21%
11	3.0%	0.38%	20.50%	2.56%		11	85,323,953	2.98%	16,381,983	19.20%
>	Manager	nent's bas	e case sce	nario or an	ave	eraç	ge of vario	us project	tions can	be used

as the mean. Standard deviation can be estimated based on historical results or difference in management's scenarios

Experience | Knowledge | Relationships | Insight

© 2023 Keiter CPAs

Scenario Analysis with Management Projections Using Monte Carlo

- Monte Carlo simulations are frequently used in financial reporting engagements (e.g., valuation of contingent consideration/earnouts). The forecast example on the right ran simulations using pounds shipped and price per pound as variables in determining the possible outcomes of the present value of an earnout.
- When Monte Carlo simulations are used to analyze financial projections, consideration should be given to reducing to discount rate used in DCF due to shifting of risk analysis.

		Qrt 12 02/29/20	Qrt 13 05/31/20	Qrt 14 08/31/20	Qrt 15 11/30/20	Qrt 1 02/28
Estimated marterly names shinned in excess of threshold	Base - Ort 11					
High	6.906.687	7.562.113	8.566.546	9.376.042	8.408.797	9.462
Moderate	6 906 687	7 341 857	8 081 648	8 601 874	7 507 855	8 157
Low	6,906,687	7,121,601	7,596,749	7,827,705	6,606,912	6,852
Quarterly growth rates of estimated pounds shipped in exces	s of threshold					
High		9.5%	13.3%	9.4%	(10.3%)	1
Moderate		6.3%	10.1%	6.4%	(12.7%)	
Low		3.1%	6.7%	3.0%	(15.6%)	
Mean		6.3%	10.0%	6.3%	(12.9%)	
Standard deviation		2.6%	2.7%	2.6%	2.2%	
Estimated quarterly growth rates per Monte Carlo Simulation		6.3%	10.1%	6.4%	(12.7%)	
Quarterly pounds shipped (forecast)	Base - Qrt 11 6,906,687	7,341,857	8,081,648	8,601,874	7,507,855	8,157
Quarterly growth rates of estimated price per pound -						
blended	Base - Qrt 11					
High	\$1.98	\$2.21	\$2.23	\$2.29	\$2.34	ş
Moderate	\$1.98	\$2.14	\$2.10	\$2.10	\$2.09	\$
Low	\$1.98	\$2.08	\$1.98	\$1.91	\$1.84	ş
Quarterly growth rates of estimated price per pound						
High		11.3%	1.0%	2.5%	2.5%	
Moderate		8.1%	(1.8%)	(0.3%)	(0.2%)	
Low		4.8%	(4.9%)	(3.5%)	(3.5%)	(4
Mean		8.1%	(1.9%)	(0.5%)	(0.4%)	
Standard deviation		2.6%	2.4%	2.5%	2.5%	
Estimated quarterly growth rates per Monte Cano Simulation	Base - Ort 11	0.1%	(1.6%)	(0.3%)	(0.2%)	
Quarterly price per pound (forecast) - blended price	Control (1996) 6,906,807 6,906,807 6,906,867 excess of threshold 8ase - Qrt 11 6,906,867 8ase - Qrt 11 6,906,867 8ase - Qrt 11 8ase - Qrt 11 51,98 Aation 8ase - Qrt 11	\$2.14	\$2.10	\$2.10	\$2.09	ş
Net sales		15,740,950	17,008,510	18,041,917	15,710,705	17,138
Earn out at 3%		\$472,229	\$510,255	\$541,258	\$471,321	\$514
Total undiscounted earn out	\$2,509,217					
Present value factor		0.9867	0.9747	0.9627	0.9511	0.
Present value of earn out payments		\$465,958	\$497,326	\$521,095	\$448,278	\$483
Total present value of earn out for base case		\$2,415,826				
Total present value of earn out for mean		\$2,403,599				
Total present value of earn out for median		\$2,400,497				

